Аналитическая химия. Методы разделения и концентрирования Основные методы разделения и концентрирования

17.11.2023

1) Физические методы : упаривание (выпаривание), перегонка

Упаривание – неполное испарение растворителя (уменьшение объёма – концентрирование)

Выпаривание – испарение растворителя досуха (с последующим растворением сухого остатка в малом объёме)

Перегонка – отделение летучих компонентов

2) Химические методы : осаждение, соосаждение

Осаждение – разделение (систематический ход анализа); концентрирование (осаждение определяемого иона из большого объёма анализируемого раствора и растворение осадка в малом объёме)

Соосаждение – одновременное осаждение из одного и того же раствора растворимого в данных условиях микрокомпонента с выпадающим в осадок макрокомпонентом.

Причины соосаждения : 1) поверхностная адсорбция – соосаждаемое вещество адсорбируется на поверхности коллектора и осаждается с ним; 2) окклюзия – механический захват части маточного раствора с соосаждаемым ионом внутрь осадка коллектора; 3) инклюзия – образование смешанных кристаллов

Соосаждение используют для концентрирования веществ, находящихся в анализируемом растворе в микроколичествах, с последующим их определением в концентрате.

3) Физико-химические методы : экстракция, хроматография

Экстракция – метод извлечения вещества из раствора или сухой смеси с помощью подходящего растворителя. Для извлечения из раствора применяются растворители, не смешивающиеся с этим раствором, но в которых вещество растворяется лучше, чем в первом растворителе. Экстракция применяется в химической, нефтеперерабатывающей, пищевой, металлургической, фармацевтической отраслях.

Хроматография – динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами – неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза).

88. Методы качественного химического анализа

Микрокристаллоскопический анализ

Для обнаружения катионов и анионов могут быть использованы реакции, в результате которых образуются соединения с характерной формой кристаллов. На форму и скорость образования кристаллов влияют условия проведения реакции. Существенную роль в микрокристаллоскопических реакциях играет быстрое испарение растворителя, что приводит к концентрированию раствора и, следовательно, увеличению чувствительности определения иона.

Пирохимический анализ



При нагревании веществ в пламени горелки можно наблюдать различные характерные явления: испарение, плавление, изменение цвета, окрашивание пламени. Все эти явления используют в качественном анализе для предварительных испытаний вещества. Иногда с помощью пирохимических реакций удается повысить избирательность и чувствительность определения . Пирохимические реакции применяют для анализа минералов в полевых условиях.

Окрашивание пламени

При введении в пламя раствора соли металла происходит ряд сложных процессов: испарение, образование твердых аэрозолей, диссоциация, ионизация, взаимодействие с кислородом, возбуждение атомов, ионов и молекул. Конечным итогом этих процессов является аналитически используемый эффект – свечение пламени .

89. Методы определения количественного состава соединений


90. Основные физические величины

Физическая величина – физическое свойство материального объекта, физического явления, процесса, которое может быть охарактеризовано количественно.

Значение физической величины – число, характеризующее эту физическую величину, с указанием единицы измерения, на основе которой они были получены.

Система физических единиц – совокупность единиц измерений физических величин, в которой существует некоторое число так называемых основных единиц измерений, а остальные единицы измерения могут быть выражены через эти основные единицы. СИ (Система Интернациональная) – международная система единиц,. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике.



В системе СИ каждая основная величина имеет соответствующую единицу: единица длины – метр (м); единица времени – секунда (с); единица массы – килограмм (кг); единица силы электрического тока – ампер (А); единица температуры – кельвин (К); единица кол-ва вещества – моль (моль); единица силы света – кандела (кд)

При практическом использовании единицы Международной системы нередко оказываются либо слишком большими, либо слишком малыми, поэтому с помощью особых приставок могут быть образованы десятичные кратные и дольные единицы.

дека да 10 1 деци д 10 -1
гекто г 10 2 санти с 10 -2
кило к 10 3 милли м 10 -3
мега М 10 6 микро мк 10 -6
гига Г 10 9 нано н 10 -9
тера Т 10 12 пико п 10 -12
пета П 10 15 фемто Ф 10 -15
экса Э 10 18 атто а 10 -18

91. Понятие физических методов и их классификация

92. Использование физических методов при экспертном исследовании

93. Понятие физической величины «плотность». Методы определения плотности

Плотность – физическая величина, равная отношению массы тела к его объёму (ρ = m / V ). Исходя из определения плотности, её размерность кг/м 3 в системе СИ.

Плотность вещества зависит от массы атомов, из которых оно состоит, и от плотности упаковки атомов и молекул в веществе. Чем больше масса атомов и чем они ближе расположены друг к другу, тем больше плотность.

Плотномеры служат для измерения плотности жидкостей, газов и твердых веществ.

Плотность неоднородного вещества – соотношение массы и объема, когда последний стягивается к точке, в которой измеряется плотность. Отношение плотностей двух веществ при определенных стандартных физических условиях называют относительной плотностью; для жидких и твердых веществ ее измеряют при температуре t , как правило, по отношению к плотности дистиллированной воды при 4°C, для газов – по отношению к плотности сухого воздуха или водорода при нормальных условиях (T = 273К, p = 1,01 10 5 Па).

Для сыпучих и пористых твердых веществ различают плотности истинную (масса единицы объема плотного материала, не содержащего пор), кажущуюся (масса единицы объема пористого материала из зерен или гранул) и насыпную (масса единицы объема слоя материала).

94. Понятие физической величины «масса». Методы определения массы

Масса – скалярная физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Различают массу инертную и массу гравитационную.

Понятие масса было введено в механику И. Ньютоном . В классической механике Ньютона масса входит в определение импульса (кол-ва движения) тела: импульс р пропорционален скорости движения тела V , p=mv (1). Коэффициент пропорциональности – постоянная для данного тела величина m – и есть масса тела. Эквивалентное определение массы получается из уравнения движения классической механики F=ma (2). Здесь масса – коэффициент пропорциональности между действующей на тело силой F и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) масса называется инерциальной (инертной) массой ; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше масса тела, тем меньшее ускорение оно приобретает, т.е. тем медленнее меняется состояние его движения.

В теории гравитации Ньютона масса выступает как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона: F = G* (m 1 *m 2 / R 2) - (3), где R – расстояние между телами, G – универсальная гравитационная постоянная, a m 1 и m 2 – массы притягивающихся тел.

Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4). Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела .

Весы – прибор для определения массы тел (взвешивания) по действующему на них весу, приближённо считая его равным силе тяжести. Рассмотрим в качестве примера измерение массы тела, которую мы измеряем с помощью обыкновенных равноплечих весов. Под действием земного притяжения создаются силы. Масса тела вместе с этими силами давит на одну чашку, а масса гирь - на другую. Подбирая гири, мы добиваемся равновесия, т.е. равенство этих сил. Это дает нам право сказать, что масса взвешиваемого тела равна массе гирь, принимая, что сила земного притяжения на расстоянии между чашками остается одной и той же. Как видим, для измерения массы нам пришлось преобразовать массы тела и гирь в силы, а для сравнения сил между собой преобразовать их действие в механическое перемещение рычагов весов.


36.Методы разделения веществ в аналитической химии.

Разделение – это операция (процесс), в результате которого компоненты , составляющие исходную смесь, отделяются один от другого. Наибольшее распространение получили следующие методы предварительного концентрирования и разделения.

Физические:

Методы испарения

Плавление и кристаллизация (замерзание

Озоление – сухом озолении влажном (мокром) озолении Флотация

Химические:

Осаждение и соосаждение центрифугирование.

Комплексообразование.

Физико-химические:

Хроматографические методы

Сорбционные методы адсорбцию (поглощение поверхностью), абсорбцию (поглощение объемом), хемосорбцию

Электрофоретические методы –

Экстракция -

2.3. Осаждение и соосаждение

Соосаждение коллекторо м (или носителем микрокомпонентов ). В отсутствие коллектора микрокомпонент не образует осадок, так как произведение растворимости соответствующих соединений , содержащих микрокомпоненнт, не достигается.В аналитической практике используются как неорганические (гидроксиды алюминия и железа, фосфат железа), так и органические соосадители (малорастворимые соединения ионов органических веществ, например метилового фиолетового, метилового оранжевого, нафталина, α -сульфокислоты, диметиламиноазобензола). Предпочтение отдается органическим соосадителям, которые позволяют выделять определяемые ионы из растворов с концентрацией до 1: 10 13 и отличаются высокой селективностью. Кроме того, органические соосадители легко озоляются, благодаря чему соосаждаемые элементы удается получить в чистом виде.

37. Методы концентрации веществ в аналитической химии. Концентрирование – операция (процесс), в результате которого повышается отношение концентрации или количества микрокомпонентов к концентрации или количеству макрокомпонентов, или основы (матрицы).

Необходимость разделения и концентрирования может быть обусловлена следующими факторами:


  • проба содержит компоненты, мешающие определению;

  • концентрация определяемого компонента ниже предела обнаружения метода;

  • определяемые компоненты неравномерно распределены в пробе;

  • отсутствуют стандартные образцы для градуировки приборов;

  • проба высокотоксична, радиоактивна или дорога.
Различают абсолютное концентрирование и относительное концентрирование .

Абсолютное концентрирование – это перевод микрокомпонентов из большой массы (или большого объема) образца в малую массу (или малый объем). При этом повышается концентрация микрокомпонентов.

Относительное концентрирование (обогащение)– это увеличение отношения между количествами микро- и макрокомпонентов (отделение определяемых микрокомпонентов от основы , от мешающих микрокомпонентов).

Результаты концентрирования количественно характеризуют коэффициентом (фактором) концентрирования F (встречаются и другие обозначения):

где и - соответственно количество (или концентрация) микрокомпонента и макрокомпонента до концентрирования; и - соответственно количество (или концентрация) микрокомпонента и макрокомпонента после концентрирования. В случае абсолютного концентрирования и - количество (объем) раствора до и после концентрирования.

Наибольшее распространение получили следующие методы предварительного концентрирования и разделения.

Физические:

Методы испарения (упаривание, перегонка, сублимация); отгонки (широко используют для удаления летучих веществ, например, солей аммония) - разделение основано на разной летучести компонентов.

Плавление и кристаллизация (замерзание ) - разделение основано на преимущественном переходе одного из компонентов раствора или расплава в твердую фазу (напр., метод зонной плавки, применяющийся для концентрирования примесных веществ).

Озоление – метод, при котором исходный анализируемый материал путем термической обработки на воздухе превращают в минеральный остаток – золу (часто применяют при анализе лекарственного сырья). При сухом озолении образец медленно нагревают и после удаления продуктов сгорания прокаливают при температуре красного каления (≈ 500 С о) до постоянной массы; при влажном (мокром) озолении образец обрабатывают раствором соответствующего реактива (например, смачивают конц. серной к-той), медленно нагревают и после удаления продуктов сгорания прокаливают при температуре красного каления до постоянной массы.

Флотация - разделение основано на различии плотностей основного вещества и примесей (применяют для отделения пустой породы).

Химические:

Осаждение и соосаждение - один из наиболее простых и эффективных способов концентрирования ионов (подробно будет рассмотрен далее). Для отделения осадка широко используют центрифугирование.

Комплексообразование.

Физико-химические:

Хроматографические методы - совокупность различных методов, основанных на различии в сродстве разделяемых компонентов, перемещаюшихся с подвижной фазой (жидкость, газ) к неподвижной фазе (твердое вещество, ваязкая жидкость). Например, при ионообменной хроматографии разделение основано на различиях в сорбируемости компонентов.

Сорбционные методы – основаны на использовании различий в способности разделяемых или концентрируемых компонентов поглощаться веществами-носителями (сорбентами). Различают адсорбцию (поглощение поверхностью), абсорбцию (поглощение объемом), хемосорбцию (поглощение, сопровождающееся протеканием химических реакций).

Электрофоретические методы – основаны на использовании различий в скоростях движения заряженных частиц растворенных веществ во внешнем электрическом поле. Эффективен при разделении как низкомолекулярных, так и высокомолекулярных веществ, например, смеси белков, аминокислот и др.

Экстракция - совокупность методов, основаных на использовании различий в растворимости извлекаемого компонента в двух контактирующих несмешивающихся фазах (двух жидких или жидкой и твердой).

Например, дитизон, купферон и другие органические соединения с некоторыми ионами металлов образуют комплексы, легко экстрагируемые из водных растворов эфиром или хлороформом.

2.3. Осаждение и соосаждение

Соосаждение – одновременное осаждение обычно растворимого микрокомпонента с выпадающим в осадок макрокомпонентом из одного и того же раствора вследствие образования смешанных кристаллов, адсорбции, окклюзии и т.д. Осадок макрокомпонента называют коллекторо м (или носителем микрокомпонентов ).

В отсутствие коллектора микрокомпонент не образует осадок, так как произведение растворимости соответствующих соединений, содержащих микрокомпоненнт, не достигается.

В аналитической практике используются как неорганические (гидроксиды алюминия и железа, фосфат железа), так и органические соосадители (малорастворимые соединения ионов органических веществ, например метилового фиолетового, метилового оранжевого, нафталина, α -сульфокислоты, диметиламиноазобензола). Предпочтение отдается органическим соосадителям, которые позволяют выделять определяемые ионы из растворов с концентрацией до 1: 10 13 и отличаются высокой селективностью. Кроме того, органические соосадители легко озоляются, благодаря чему соосаждаемые элементы удается получить в чистом виде.

38. Экстракционное равновесие. Закон распределения Нернста-Шилова.

Экстракция - совокупность методов, основаных на использовании различий в растворимости извлекаемого компонента в двух контактирующих несмешивающихся фазах (двух жидких или жидкой и твердой). В большинстве случаев в аналитической химии используют комбинацию двух контактирующих несмешивающихся фаз «органический растворитель – водный раствор разделяемых (извлекаемых) веществ». В таком случае говорят о жидкостной экстракции. Для экстрагирования подбирают такой органический растворитель, в котором определяемое вещество растворяется хорошо, а другие компоненты смеси практически не растворяются. Достоинства экстракционных методов:

простота

доступность

избирательность

возможность работать как с большими, так и с малыми концентрациями

быстрота проведения

дешевизна оборудования и т.д.

где а(орг) и а(водн) - равновесные активности вещества А в органической и водной фазе соответственно. Величина Р в данном случае называется константой распределения (истинная термодинамическая), она постоянна при постоянной температуре для данной системы.

Учитывая, что активность равна произведению коэффициента активности на концентрацию

Р Р , тем полнее органическое вещество извлекается из водного раствора в органическую фазу.

Из этих уравнений следует, что методом экстракции нельзя в равновесных условиях абсолютно полностью выделить вещество из водной фазы в органическую, поскольку равновесная концентрация вещества в водной фазе отлична от 0.

39. Экстракционное равновесие. Константа распределения, коэффициент распределения. Степень извлечения. Фактор разделения двух веществ. Условия разделения двух веществ.

Рассмотрим распределение вешества А между двумя контактирующими несмешивающимися жидкими органической и водной фазами при постоянной температуре: А(водн) ↔ А(орг). Это равновесие будет характеризоваться константой равновесия Р, равной

где а(орг) и а(водн) - равновесные активности вещества А в органической и водной фазе соответственно. Величина Р в данном случае называется константой распределения (истинная термодинамическая), она постоянна при постоянной температуре для данной системы.Учитывая, что активность равна произведению коэффициента активности на концентрацию

Если химическая природа вещества А одинакова в обеих жидких фазах и

Эти формулы отражают закон распределения Нернста. Константа Р зависит от природы распределяемого вещества и жидких фаз и температуры. Чем больше Р , тем полнее органическое вещество извлекается из водного раствора в органическую фазу. Из этих уравнений следует, что методом экстракции нельзя в равновесных условиях абсолютно полностью выделить вещество из водной фазы в органическую, поскольку равновесная концентрация вещества в водной фазе отлична от 0.

Многие вещества часто находятся в несмешивающихся контактирующих жидких органической и водной фазах в неодинаковой химической форме. Например, слабые органические кислоты в водном растворе частично находятся в ионизированной форме, т.е. в водном растворе существует две формы – молекулы и анионы слабой кислоты. В органической фазе возможна димеризация молекул кислоты за счет образования водородных связей, т.е. в органической фазе присутствуют две химические формы кислоты – мономер и димер. В подобных случаях (а они встречаются очень часто) суммарное существование различных форм распределяемого вещества учитывается введением коэффициента распределения D (встречаются и иные буквенные обозначения коэффициента распределения):

где - сумма равновесных концентраций в органической S (А/В) = 1 разделение двух веществ А и В невозможно. Разделение возможно, если соблюдаются следующие два условия:

S (А/В) ≥ 10 4 и D (А)D (В) ≤ 1. Константа экстракции К экс ,

Необходимость разделения и концентрирования как методов пробоподготовки может быть обусловлена следующими факторами:

    концентрация определяемого компонента ниже предела обнаружения метода;

    проба содержит компоненты, мешающие определению компонента;

    определяемые компоненты неравномерно распределены в пробе;

    отсутствуют стандартные образцы для градуировки приборов;

    проба высокотоксична.

При разделении смеси вещества отделяют друг от друга. При концентрировании вещества, присутствующие в малом количестве, либо собираются в меньшем объеме (абсолютное концентрирование), либо отделяются от макрокомпонента таким образом, что отношение концентрации микрокомпонента к макрокомпоненту повышается (относительное концентрирование).

Методы для решения задач разделения и концентрирования одни и те же, но в каждом конкретном случае возможны модификации, связанные с относительными количествами веществ, способом получения и измерения аналитического сигнала.

Для решения задач разделения и концентрирования используют почти все химические и физические свойства веществ: растворимость (осаждение, соосаждение), распределение между несмешивающимися фазами (экстракция, хроматография), летучесть (дистиляция), скорость движения в электрическом поле (электрофорез), электродный потенциал и др.

Концентрирование и разделение веществ методом осаждения основано на различной растворимости соединений преимущественно в водных растворах. В основном метод осаждения используют при разделении веществ. Изменяя кислотность среды, комбинируя осадители, можно добиться разделения еще большего числа элементов.

При концентрировании методом осаждения обычно выделяется матрица, а не микрокомпонент. Концентрирование микрокомпонента осаждением используют редко, содержание его столь мало, что твердая фаза не образуется. Для этой цели следует применять метод соосаждения микрокомпонента. Соосаждение – это распределение микрокомпонента между раствором (жидкая фаза) и осадком (твердая фаза).

Микрокомпонент соосаждается на коллекторе . Коллектором называют малорастворимое неорганическое и органическое соединение, которое должны полностью захватывать нужные и не захватывать мешающие микрокомпоненты и компоненты матрицы. Эффективность органических коллекторов настолько высока, что селективное выделение микрокомпонента осуществляется, когда его отношение к макрокомпоненту составляет 1:10 15 . Причина такой высокой эффективности обычно заключается в связывании микрокомпонента в комплекс с коллектором.

В методах разделения и концентрирования также используют адсорбционные процессы. Адсорбцией называется процесс поглощения газов, паров и растворенных веществ твердыми поглотителями (адсорбентами). Различают физическую адсорбцию (взаимодействие молекул сорбирующихся веществ с поверхностью сорбента в результате действия электростатических сил) и хемосорбцию (возникновение между сорбирующимся соединением и поверхностью сорбента прочной химической связи). В отличие от физической адсорбции хемосорбция обратима не полностью. При адсорбции неорганических и органических соединений используют природные (активные угли, кремнеземы, целлюлоза) и синтетические (ионообменные и хелатообразующие синтетические смолы) адсорбенты.

На разнице в распределении вещества между двумя несмешивающимися фазами основаны методы хроматографии и экстракции .

Методом экстракции можно разделить вещества в зависимости от их распределения в двух несмешивающихся фазах. Разделяемые вещества имеют различную степень сродства к этим двум фазам (обычно водным и органическим растворителям) и распределяются в зависимости от этой степени сродства в двух фазах. При экстракции одновременно протекают процессы:

    образование экстрагируемых соединений;

    распределение экстрагируемых соединений между органической и водной фазами;

    реакции в органической фазе (диссоциация, ассоциация, полимеризация).

Обычно используют следующую технику разделения веществ методом экстракции: вводят в делительную воронку водный раствор, содержащий экстрагируемое соединение и органический растворитель, не смешивающийся с водной фазой. Затем воронку энергично встряхивают для обеспечения хорошего контакта фаз. После встряхивания фазы разделяют.

По способам осуществления экстракция делится на периодическую (экстракция вещества из водной фазы отдельными порциями свежего экстрагента), непрерывную (непрерывное относительное перемещение двух фаз, одна из фаз, обычно водная, остается неподвижной), противоточную (органическая фаза переносится последовательно через серию экстракционных трубок и в каждой из них контактирует со свежими порциями нижней водной фазы до установления равновесия, что является наиболее эффективным способом).

Делительные воронки для периодической экстракции и приборы для непрерывной экстракции представлен на рис. 3.3.

Рис. 3.3. Делительные воронки (а ) и приборы (б, в ) для непрерывной экстракции (плотность экстрагента ниже (б ) и выше (в ) плотности воды):

1  холодильник; 2  экстрагируемая жидкость; 3  трубка возврата экстрагента; 4  резервуар экстрагента; 5  воронка для диспергирования растворителя; 6  пористый стеклянный диск

Наиболее широко экстракцию используют при разделении смесей элементов, для чего обычно применяют избирательные экстрагенты. Например, серосодержащие экстрагенты (дитизон, дитиокарбаминаты) извлекают элементы, проявляющие сродство к атомам серы (Cu, Ni, Co, Hg, Pb и др.) и не экстрагируют магний, алюминий, скандий и ряд других элементов, не взаимодействующих с серосодержащими реагентами. Для концентрирования микрокомпонентов обычно применяют хелатообразующие экстракционные реагенты (дитизон, 8-оксихинолин). При этом обычно извлекают несколько микроэлементов (групповое концентрирование). Для индивидуального концентрирования селективность извлечения достигается изменением условий экстракции (РН, введение маскирующих веществ). Обычно микрокомпоненты извлекают в органическую фазу, объем которой в несколько раз меньше объема водной фазы. Возможен и другой вариант – извлечение матрицы и получение концентрата микрокомпонентов в водной фазе.

Хроматография также является методом разделения веществ, основанным на распределении компонентов между двумя фазами. Но одна из фаз является неподвижной (твердое вещество или пленка жидкости на твердом носителе), а другая – подвижной (жидкость или газ), протекающей через неподвижную фазу. Обычно неподвижную фазу помещают в стеклянную или металлическую трубку, называемую колонкой.

В зависимости от силы взаимодействия (обычно за счет сил адсорбции), разделяемых компонентов с поверхностью неподвижной фазы компоненты перемещаются вдоль колонки с разной скоростью. Одни компоненты остаются в верхнем слое неподвижной фазы, другие, с меньшей степенью взаимодействия с неподвижной фазой, оказываются в нижней части колонки, некоторые покидают колонку вместе с подвижной фазой. В результате компоненты разделяются. Возможности хроматографии многократно больше, чем возможности других методов, основанных на распределении компонентов между фазами, и во многом превосходят методы разделения веществ, основанных на других вышеприведенных принципах.

Хроматография  это гибридный аналитический метод, в котором хроматографический процесс сочетает разделение и измерение. Метод позволяет разделять многокомпонентную смесь, идентифицировать компоненты и определять ее количественный состав. Это динамический метод, обеспечивающий многократность актов адсорбции – десорбции разделяемых компонентов, так как разделение происходит в потоке подвижной фазы.

Методы хроматографии разделяют по агрегатному состоянию фаз (газожидкостная, газотвердофазная, жидкостно-жидкостная, жидкостно-твердофазная и жидкостно-гелевая), по механизму взаимодействия (распределительная, ионообменная, адсорбционная и др.), по способу получения хроматограмм (элюентная – непрерывное пропускание подвижной фазы с малой сорбируемостью (элюент), вытеснительная – непрерывное пропускание подвижной фазы с большей сорбируемостью, чем у разделяемых веществ (вытеснитель), фронтальная – непрерывное введение раствора разделяемых веществ (в чистом виде можно выделить лишь одно вещество)).

Хроматографическое разделение осуществляется в приборах – хроматографах (блок-схема которого на рис. 4.4). Количество вещества, выходящего из колонки, регистрируют с помощью детектора, а самописец записывает на диаграммной ленте сигналы детектора – хроматограмму, которая в современных хроматографах обрабатывается ЭВМ.

Получающиеся хроматограммы представлены на рис.4.5 имеют форму кривой с пиками, где t R – время удерживания, h - высота пика, - ширина пика. Хроматограммы позволяют при их расшифровке определять качественный и количественный состав разделяемых компонентов смеси. Положение хроматографического пика на хроматограмме (удерживаемый объем, время удерживания) характеризует природу вещества, а площадь, ограниченная этой кривой и нулевой линией детектора (хроматографический пик), пропорциональна количеству данного вещества, прошедшего через детектор.

Рис. 3.4. Блок-схема хроматографа: 1  система подачи подвижной фазы (баллон с газом, насос для жидкой подвижной фазы); 2  дозатор; 3  колонка; 4  детектор; 5  регистратор (самописец, интегратор, ЭВМ); 6  микропроцессор, ЭВМ

Для разделения и концентрирования веществ также используют методы испарения (дистилляция , отгонка , возгонка ). Методы дистилляции основаны на разной летучести веществ. При дистилляции вещество переходит из жидкого состояния в газообразное, а затем конденсируется, образуя вновь жидкую или иногда твердую фазу. При отгонке (выпаривании) удаляются вещества, которые легко образуют летучие соединения. Это могут быть макрокомпоненты (отгонка матрицы) и микрокомпоненты, что используется реже. Отгонка матрицы сопровождается, как правило, потерями микрокомпонентов из-за механического уноса пробы с газовой фазой, испарения легколетучих форм микрокомпонентов и сорбции на поверхности посуды, используемой при выпаривании. Для устранения этих потерь используют выпаривание сверху под ИК-лампой. Распространена отгонка с предварительным химическим превращением, т.е. после переведения в результате химических реакций макро- или микрокомпонента в легколетучие соединения. Для перевода макро- или микрокомпонентов в летучие соединения применяют газообразные, жидкие и твердые вещества: F 2 , CL 2 , Br 2 , HCL, HF, CCL 4 , BBr 3 , ALCL 3 и другие.

При возгонке (сублимации) осуществляется перевод вещества из твердого в газообразное состояние и последующее осаждение его в твердой форме (минуя жидкую фазу). К разделению возгонкой прибегают, как правило, если разделяемые компоненты трудно плавятся или трудно растворимы и поэтому не могут быть разделены перегонкой или кристаллизацией. При использовании этого метода для концентрирования микрокомпонентов ограничивается сравнительно небольшим числом сублимируемых матриц.

Используют также и электрохимические методы (электровыделение , цементация , электрофорез ) выделения и концентрирования. Наиболее распространенным является метод электровыделения , при котором отделяемое и концентрируемое вещество выделяется на твердых электродах в элементном состоянии или в виде какого-то соединения. Электрохимическое выделение основано на осаждении вещества электрическим током при контролируемом потенциале. Наиболее распространен вариант катодного осаждения металлов. Материалом электродов могут служить углерод (графит, стеклоуглерод), серебро, медь, сплавы ряда металлов.

Часто выделение проводят на ртутном макрокатоде. Состав выделяемого соединения зависит от условий электровыделения, свойств компонентов и материала электрода. Например, при потенциалах 540 мВ на графитовом электроде некоторые элементы выделяются в элементом состоянии (Ag, Bi, Cd, Cu, Pb), а часть в виде оксидов (Co, Cr, Fe, Mn). При концентрировании микрокомпонентов наиболее удобен вариант электролитического выделения микрокомпонентов, чем компонентов матрицы. В этих условиях уменьшаются потери микрокомпонентов, которые происходят при выделении матрицы за счет их механического захвата, а также образования интерметаллических соединений.

Метод цементации (называемый внутренним электролизом) заключается в восстановлении компонентов (обычно малых количеств) на металлах с отрицательными потенциалами (Al, Zn, Mg). При цементации происходят одновременно два процесса: катодный (выделение компонента) и анодный (растворение цементирующего металла). В качестве примера можно привести выделение микрокомпонентов из воды на металлах-цементаторах (Al, Zn, Mg) с последующим атомно-эмисиионным определением микроэлементов непосредственно в концентрате.

Метод электрофореза основан на различиях в скоростях движения частиц разного заряда, формы и размера в электрическом поле. На скорость движения частиц сильно влияет состав раствора, в частности РН, что используется для повышения селективности. Главная область применения электрофореза – биохимический анализ.

Существует множество классификаций методов разделения и концентрирования, основанных на разных признаках. Рассмотрим важнейшие из них.

1. Классификация по природе процесса дана на рис.

Рис. 1

Химические методы разделения и концентрирования основаны на протекании химической реакции, которая сопровождается осаждением продукта, выделением газа. Например, в органическом анализе основным методом концентрирования является отгонка: при термическом разложении матрица отгоняется в виде СО2, Н2О, N2, а в оставшейся золе можно определять металлы.

Физико-химические методы разделения и концентрирования чаще всего основаны на избирательном распределении вещества между двумя фазами. Например, в нефтехимической промышленности наибольшее значение имеет хроматография.

Физические методы разделения и концентрирования чаще всего основаны на изменении агрегатного состояния вещества.

2. Классификация по физической природе двух фаз. Распределение вещества может осуществляться между фазами, которые находятся в одинаковом или разном агрегатном состоянии: газообразном (Г), жидком (Ж), твёрдом (Т). В соответствии с этим различают следующие методы (рис.).


Рис. 2

В аналитической химии наибольшее значение нашли методы разделения и концентрирования, которые основаны на распределении вещества между жидкой и твёрдой фазой.

  • 3. Классификация по количеству элементарных актов (ступеней).
  • § Одноступенчатые методы - основаны на однократном распределении вещества между двумя фазами. Разделение проходит в статических условиях.
  • § Многоступенчатые методы - основаны на многократном распределении вещества между двумя фазами. Различают две группы многоступенчатых методов:
  • – с повторением процесса однократного распределения (например, повторная экстракция). Разделение проходит в статических условиях;
  • – методы, основанные на движении одной фазы относительно другой (например, хроматография). Разделение проходит в динамических условиях
  • 3. Классификация по виду равновесия (рис.).

Рис. 3

Термодинамические методы разделения основаны на различии в поведении веществ в равновесном состоянии. Они имеют наибольшее значение в аналитической химии.

Кинетические методы разделения основаны на различии в поведении веществ во время процесса, ведущего к равновесному состоянию. Например, в биохимических исследованиях наибольшее значение имеет электрофорез. Остальные кинетические методы используются для разделения частиц коллоидных растворов и растворов высокомолекулярных соединений. В аналитической химии эти методы применяются реже.

Хроматографические методы основаны и на термодинамическом, и на кинетическом равновесии. Они имеют огромное значение в аналитической химии, поскольку позволяют провести разделение и одновременно качественный и количественный анализ многокомпонентных смесей.

Курсовая работа:

Методы разделения и концентрирования в анализе элементов

Введение

Общая характеристика методов разделения

Экстракция как метод разделения

Общая характеристика методов концентрирования

Соосаждение как метод концентрирования

Заключение

Список литературы

Введение

Развитие аналитической химии идет двумя основными путями: разработка максимально селективных методов определения индивидуальных веществ и оптимальное сочетание методов разделения и концентрирования с неселективными методами определения в комбинированных методах анализа. Под селективностью метода в данном случае понимается возможность регистрации аналитического сигнала, соответствующего определяемому веществу, на фоне, создаваемом сопутствующими примесями и матрицей. Понятие комбинированные находится в полном соответствии со смысловым содержанием этого слова: соединенные вместе для достижения общей цели. Соответственно могут быть комбинированные методы разделения, в которых преследуется цель улучшения разделения, и комбинированные методы анализа, обеспечивающие оптимальное сочетание предварительного разделения с конечным определением. Широкое распространение комбинированных методов анализа, в первую очередь хроматографических, нельзя рассматривать только как следствие ограниченной селективности известных методов прямого определения веществ в объекте анализа.

Помимо важной роли методов разделения и концентрирования для комбинированных методов анализа, методы разделения имеют самостоятельную ценность при решении препаративных задач. Аналитики постоянную испытывают потребность в веществах высокой чистоты: растворителях, в первую очередь в воде, реагентах и наконец во всех тех веществах, которые анализируются ими. Задачи приготовления стандартных образцов столь же разнообразны, сколь разнообразны объекты анализа. И далеко не всегда можно воспользоваться готовыми образцами и их компонентами необходимой степени чистоты. В своих препаративных интересах аналитическая химия вплотную соприкасается с химической технологией. Методы разделения и концентрирования, разрабатываемые аналитиками, зачастую, не претерпев принципиальных изменений, реализуются в технологических процессах. При этом речь может идти как крупнотоннажных экстракционных технологиях получения редких металлов, так и о процессах в фармацевтической промышленности, в биохимических производствах, где грань между масштабами лабораторного эксперимента и промышленного производства практически отсутствует.

Общая характеристика методов разделения

Под методами разделения будем понимать совокупности характерных для них химических и физических процессов и способов их осуществления. Сам по себе процесс, например, разделения веществ между двумя жидкими фазами еще не является методом разделения. В сочетании со способом осуществления, обеспечивающим переход веществ из одной фазы в другую в результате их равновесного распределения между фазами, такой процесс станет экстракцией, а в сочетании с хроматографическим способом - жидкосножидкостной хроматографией.

Трудности при любой попытке систематизации методов разделения вносят комбинированные методы анализа. За одним названием «газовая» и «жидкостная» хроматография скрываются и методы хроматографического разделения веществ в газовой и жидкостной фазах, и соответствующие комбинированные методы.

Общепринятая классификация медов разделения и концентрирования до сих пор отсутствует. При совместном рассмотрении различных методов чаще всего приходится сталкиваться или с их простым перечислением. Или с объединением в в группы по какому-либо формальному признаку вне общей классификации. При систематизации методов разделения в простейшем случае в качестве отправной точки берут принадлежность метода к той или иной области науки, породившей его: химические, физико-химические, физические методы. Расклассифицируем методы разделения в нижеприведенных таблицах.

Таблица 1. Методы разделения, основанные на образовании выделяемым веществом новой фазы

Агрегатное состояние фазы, в которой находится исходная смесь веществАгрегатное состояние выделяемой фазыТвердое телоГазЖидкостьЖидкостьОсаждение, электроосаждение вымораживание, кристаллизацияОтгонка, дистилляция, ректификация-Газ--ВымораживаниеТвердое тело-Высокотемпературная отгонка при взаимодействии с газообразным реагентом, возгонкаСелективное растворение

Методы разделения по фазовому признаку составляют четыре группы и основаны на:

2.различии в распределении веществ между фазами;

.различиях в массопереносе, проявляющихся при индуцирумом переходе вещества из одной фазы в другую через разделяющую их третью фазу;

.механизмах внутрифазного разделения.

Для первой группы методов характерными признаками являются агрегатные состояния исходной смеси веществ и выделяемой фазы (Табл.1). Методы второй группы основаны на общих закономерностях распределения веществ между фазами и могут характеризоваться их агрегатным состоянием и способом осуществления процесса межфазного распределения. Для третьей и четвертой группы, кроме агрегатного состояния фаз, характерным признаком является природа движущих сил процесса.

Значение для аналитической химии методов разделения, входящих в первую группу, далеко неоднозначно. Процессы вымораживания и жидкой и газовой фаз и селективного растворения твердой фазы применяют сравнительно редко. Вымораживание используют при анализе газов для отделения влаги, для криогенного концентрирования более высококипящих примесей. Селективное растворение применяют в двух вариантах: частичное или полное растворение матрицы и селективное растворение фаз. Примером полного растворения матрицы является растворение сталей, сплавов при определении неметаллических включений: оксидов, карбидов, нитридов.

Важнейшее значение для аналитической химии имеют методы разделения, основанные на различиях в распределении веществ между фазами: экстракция, сорбция, различные хроматографические методы. Характерным признаком методов разделения этой группы, помимо системы фаз, является способ осуществления процесса межфазного разделения (табл.2)

Таблица 2. Методы разделения, основанные на различиях в распределении веществ между фазами

Система фазСпособ осуществления процесса межфазного разделенияОднократное равно весное распределениеМногократное по вторение процесса распределенияхроматографияЖидкость-жидкостьЭкстракцияМногоступенчатая экстрацияЖидкостно-жидкостная хроматография с полярной и неполярной стационарными фазамиЖидкость-твердое телоСоосаждение, зонная плавка, направленныя кристаллизация, сорбция и ионный обменМногократная перекристаллизацияИонообменная, адсобционная, гель-проникающая, аффинная хроматографияЖидкость-газГазовая экстракцияБарботажГазожидкостная и жидкостно-газовая хроматографияВещество в критическом состоянии-твердое тело (жижкость)Сверхкритическая флюидная экстракцияМногоступенчатая флюидная экстракцияСверхкритическая флюидная хроматография

Экстракция как метод разделения

Из методов разделения, основанных на однократном равновесном разделении веществ, наибольшее практическое значение имеет экстракция. Экстракция является одним из наиболее надежных, весьма эффективных и распространенных методов концентрирования и разделения веществ. Исследование и применение экстракции - ведущее, быстро развивающееся направление в современной химии.

Под экстракцией понимают как сам процесс распределения веществ между двумя фазами, так и метод разделения, основанный на этом процессе. В наиболее общем случае можно рассматривать фазовые равновесия в системах жидкость- жидкостей, жидкость - газ. Возможны самые различные варианты жидких фаз: вода и водные растворы, органические растворители и растворы в них других органических соединений, расплавы солей и металлов, расплавы твердых при нормальных условиях органических соединений. Метод газовой экстракции (система жидкость- газ и реже твердое тело - газ) имеет более узкое назначение - для анализа газообразных и легколетучих соединений в конденсированных фазах, и отличается от обычной экстракции только тем, что в качестве экстрагента используют газ, не мешающий аналитическому определению газообразных примесей.

На распределении веществ между двумя жидкими фазами основаны многие близкие к экстракционным методы, например бумажная и колоночная распределительная хроматография. В распределительной хроматографии одна из фаз, органическая или водная, закреплена на инертном носителе, а другая движется. Этим достигается многократность обмена между фазами. Особое значение приобретает извлечение различных соединений металлов из водных растворов в несмешивающиеся с ними органические растворители.

Экстракция осуществляется путем 1) приведения растворов (ионов металла и экстрагента) в контакт (смешения); 2) механического разделения фаз; 3) регенерации экстрагента.

Области применения экстракции весьма разнообразны. Экстракция дает возможность отделить даже незначительные количества примесей от основы, что особенно важно при получении и анализе материалов высокой чистоты, разделении радиоизотопов, очистке биологических материалов и т. п.

Реже применяют экстракцию для отделения основы от следов и, как правило, лишь в тех случаях, когда не удается выделить примесей. Макрокомпоненты экстрагируют обычно в виде комплексных металлгалогенидных кислот (например, железо из HCI-растворов диэтиловым эфиром) или коордионационно-сольватоционных солей. Микропримеси чаше экстрагируют в виде внутрикомплексных соединений, реже - в виде комплексных металлокислот.

Эффективна экстракция и при разделении компонентов, обладающих близкими свойствами, в той числе высококипящих веществ и азеотропных смесей.

Экстракцию широко используют для повышения чувствительности определений многими химическими и физико-химическими методами анализа. Значительную роль экстракция играет при изучении равновесий в растворах, процессов комплексообразовании и вообще при исследовании состояния веществ в растворах.

Такие достоинства экстракции, как универсальность, экспрессность, простота осуществлении, быстрота, низкие рабочие температуры, доступность, отсутствие сложной аппаратуры, сравнительно небольшая (или даже отсутствие) соэкстракция, и другие, делают экстракцию весьма эффективный методом концентрирования микропримесей и разделения веществ. К настоящему времени разработаны методы экстракции почти всех элементов и многих классов соединений как для препаративных целей, так и в технологии, особенно ядерной.

Экстракцию можно использовать как для абсолютного, так и для относительного концентрирования. Относительное экстракционное концентрирование, при которой достигается обогащение, т. е. уменьшается соотношение между макро- и микрокомпонентами, более важно для анализа.

В практике химического анализа экстракцию применяют либо только как метод разделения; выделенный элемент при этом (при необходимости экстракт предварительно минерализуют) определяют любым обычным методом, либо в сочетании с последующим определением (экстракционно-фотометрические, экстракционно-полярографические и другие, так называемые комбинированные методы). Определение интересующего элемента можно производить как в водной, так и в органической среде

Система фазДвижущая сила процессаГрадиент химического потенциалаГрадиент электрического потенциалаГрадиент давленияЖидкость-жидкость- жидкостьДиализ через жидкие мембраныЭлектродиализ через жидкие мембраны - Жидкость-твердое тело-жидкостьДиализ Электродиализ, электроосмосУльтрафильтрация, обратный осмос, пьезодиализЖидкость-твердое тело-газИспарение через мембрану - - Газ-твердое тело-газГазодиффузинное разделение - -

Методы разделения, основанные на многократном равновесном распределении, всегда имеют принципиальные ограничения по чистоте выделенных фракций. Очевидно, что добиться хорошего разделения в этом случаем можно только при существенном различии в свойствах разделяемых веществ. Процесс в области этих методов всецело определяется созданием новых селективных сорбентов или экстрагентов. Но появление принципиально новых классов таких соединений, как например, фосфорорганические экстрагенты краун-эфиры или хиральные сорбенты,- явление сравнительно редкое. Как правило, поиск приводит к необходимости получения все более сложных и дорогостоящих соединений, а положительный эффект от их использования не оправдывает затраты на поиски.

Отталкиваясь от приведенной в табл. 2 классификации методов, основанных на различиях в распределения веществ между фазами, можно увидеть и другой путь повышения эффективности методов этой группы, заключающийся в совершенствовании способов осуществления процессов межфазного распределения, в переходе от однократных процессов к многоступенчатым и хроматографическим.

Может показаться несколько странным, что хроматографический метод отнесен к способам осуществления процесса межфазного распределения веществ. Обычно хроматографические методы рассматривают в отрыве от других методов разделения, основанных на различиях в распределении веществ между фазами. В многочисленных дефинициях хроматографии, предлагавшихся в различные годы, подчеркивается, что хроматография - это метод разделения или процесс, приводящий к разделению веществ. Здесь нет противоречий. Исторически хроматография возникла как метод разделения, суть которого сводилась к расторжению зон индивидуальных веществ при прохождении раствора, содержащего их смесь, через слой твердого сорбента. При рассмотрении физико-химических явлении, вызывающих это «расторжение», закономерно говорить о хроматографии как о процессе, происходящем в двухфазной системе. Когда же речь идет о совокупности методических приемов, применяемых практически к любой двухфазной системе, позволяющих многократноувеличить коэффициенты разделения, достигаемые при однократном равновесном распределении веществ между фазами, можно сказать, что хроматография является способом осуществления процесса межфазного разделения..

Хроматография как способ осуществления процесса межфазного заключается в относительном перемещении фаз в ограниченном пространстве в условиях, когда одна из них постоянно находится в диспергированном состоянии или в виде пленки на поверхности стенок, ограничивающих это пространство. Такое перемещение происходит в колонке, в капилляре, в тонком слое. Одна из фаз может быть неподвижной или обе будут находиться в движении. В любом случае хроматографический способ обеспечивает многократное последовательное перераспределение веществ между взаимно перемещающимися фазами, приводящее к различиям в скоростях движения зон отдельных веществ в разделительном пространстве, а в случае одновременного движения обеих фаз в различных направлениях и к различиям в направлении движении зон. И собственно методом разделения окажется приложение одного из возможных проявлений хроматографического способа осуществления процесса межфазного распределения к конкретной двухфазной системе.

Предлагаемое толкование понятия «хроматография» представляется существенным для понимания общности хроматографнческих методов разделения, лежащих в основе наиболее распространенных сегодня хроматографических методов анализа. Интерес к хроматографическим методам определяется в первую очередь тем, что они теоретически не имеют ограничений по коэффициентам разделения веществ, какими бы малыми не были для них различия в коэффициентах распределения. В этом и заключается тот качественный скачок, который дает переход от методов, основанных на однократном равновесном распределении, к хроматографическим.

В методах разделении веществ, основанных на различиях в межфазном распределении, всегда существуют ограничения по массопереносу. Из одной фазы в другую не может перейти вещества больше, чем это следует из коэффициента распределения, значение которого, как правило, уменьшается с ростом количества вещества в системе фаз. Переход к многоступенчатым и хроматографическим методам позволяет улучшить разделение, но вводит еще более жесткие ограничения по количеству разделяемых веществ. Так, для хроматографических методов обязательным условием становится независимость коэффициента KD от концентрации, т. е. требование линейности изотермы межфазного распределения. Отсюда для решения задач, требующих увеличения массопереноса без возрастания объема разделяющей фазы, наиболее перспективной оказывается группа методов, основанных на индуцируемом межфазном переносе вещества. Речь идет о таких процессах, в которых разделение осуществляется под воздействием постоянно действующей движущей силы.. В общем случае схема реализации таких процессов предусматривает перенос вещества на одной фазы в другую через разделяющую их третью фазу, являющуюся перегородкой, мембраной. Отсюда и название этой группы методов разделения - мембранные методы. В частном случае известны попытки осуществления индуцируемого переноса в пределах двухфазной системы - процесс электроэкстракции. Но поскольку метод не нашел широкого распространения, а его механизм описывается в рамках одной из стадий общей схемы экстракционно-мембранного процесса, он не заслуживает специального рассмотрения.

Классификация по типу мембран является данью истории развития мембранных методов, т.к. их появление в большинстве случаев инициировалось созданием избирательно проницаемых материалов. Только в последние годы наметилась тенденция направленного поиска мембран, отвечающих требованиям конкретного мембранного метода разделения. Исходя из определения мембранных методов разделения как процессов индицируемого переноса вещества из одной фазы в другую через разделяющую их третью фазу, их главными классификационными признаками считают тронную систему фаз и движущую силу процесса (табл. 3). Поскольку основным преимуществом мембранной схемы осуществления процесса разделения является увеличение массопереноса вещества через разделяющую фазу, мембранные методы закономерно попадают прежде всего в сферу интересов химической технологии. Однако уже сегодня найден целый ряд интересных областей применения мембранных методов в химическом анализе, но нельзя исключить взаимнообогащающий обмен идеями между химической технологией и аналитической химией в будущем.

Наконец, остается возможность разделения веществ за счет различий в свойствах их ионов, атомов или молекул, проявляемых в пределах одной гомогенной системы при воздействии электрического, магнитного, гравитационного, теплового полей или центробежных сил. При этом не исключается возможность фазовых превращений при переводе исходной смеси веществ в то агрегатное состояние, в котором происходит разделение, или при выделении фракций ее отдельных компонентов. Эффект разделения достигается за счет различного пространственного перемещения веществ в пределах фазы, в которой происходит их разделение. Различия в скорости пространственного перемещения ионов, атомов или молекул будут проявляться в зависимости от их массы, размеров, заряда, энергии взаимодействия частиц с ионами и молекулами, образующими среду, в которой происходит разделение. Относительная роль тех или иных факторов в достижении конечного эффекта разделения, в свою очередь, зависит от при природы действующих на них сил, Наиболее очевидный случай - электрофоретическое или, как его иногда называют, электромиграционное разделения ионов в растворах за счет различных скоростей их движения в электрическом воле. Здесь важнейшими факторами оказываются размеры и заряд иона. Различия в массе и заряде в наибольшей степени проявляются при воздействии на ионизованные частицы ускоряющего электрического поля и отклоняющего магнитного. Этот способ воздействия на систему лежит в основе масс-сепарационного метода. При разделении под воздействием центробежных сил - ультрацинтрифугировании определяющим фактором оказывается масса молекул.

Таблица 4. Методы внутрифазного разделения

Агрегатное состояние фаз, в которой происходит разделениеВид сил, вызывающих пространственное перемещение ионов, атомов или молекулЭлектрическое полеЭлектрическое и магнитное полеЦентробежная сила или гравитационное полеЖидкость Элекрофорез (элекромиграция) - ультрацентрифугированиеГаз Электрофорез Масс-сепарацияультрацентрифугирование

Следовательно, любой из известных методов внутрифазного разделения может быть охарактеризован агрегатным состоянием фазы, в пределах которой происходит разделение, и видом сил, вызывающих пространственное перемещение ионов, атомов или молекул.

Для методов внутрифазного разделения в целом характерны сложные аппаратурные решения, и целесообразность их применения в аналитической химии оправдана пропорционально возможностям, которых не имеют другие методы. Самым простым по техническому оформлению является метод электрофоретического (электромиграционного) разделения ионов в растворе, сохраняющий определенные области применения в аналитической химии. Масс-сепарация как метод разделения интересна в первую очередь тем, что она является основой одного из широко распространенных методов химического анализа - масс-спектрометрии. Здесь произошло еще более тесное слияние метода разделения и методов конечного определения, чем в случае хроматографических методов анализа. При описании масс-спектромерического метода обычно даже не упоминается, что он является одним из комбинированных методов анализа. Сложность аппаратурного оформления и высокие энергозатраты в масс-сепарапионном методе компенсируются универсальностью и практически неограниченной разделительной способностью .

Общая характеристика методов концентрирования

Определение микропримесей представляет собой актуальную задачу в связи с возросшими требованиями к чистоте материалов и необходимостью аналитического контроля окружающей среды. Для определения следовых количеств пригодны только методы, позволяющие обнаружить примеси массой 10-7-10-8 г, а иногда и до 10-14 г. Наибольшее значение имеют физические методы анализа: атомно-адсобционный, нейтронно-активационный, рентгенофлуорисцентныйи некоторые другие.

Основные задачи при определении макрокомпонентов:

1.Использование очень малых навесок или объемов пробы при значительных содержаниях в них определяемых компонентов;

2.Анализ больших по массе или по объему проб для установления содержания в них следовых количеств веществ.

Для решения первой задачи помимо указанных физических методов анализа пригодны методы ультрамикроанализа, в том числе ультрамикрохимический анализ. Он представляет собой совокупность приемов использования специальной аппаратуры для работы с ультрамалыми объемами растворов. Для решения второй задачи в качестве предварительной операции используют концентрирование. Оно необходимо в тех случаях, когда нужно увеличить концентрации микрокомпонентов для последующего анализа или отделить следовые количества определяемых компонентов от основных или других микрокомпонентов. При абсолютном концентрировании микрокомпоненты переводят из большего объема в меньший.

Как следует из определения, концентрирование всегда связано с разделением и перераспределением веществ по различным фазам, поэтому все методы, пригодные для разделения, используют для концентрирования. Наиболее распространенные методы перечислены в табл. 5. при выборе метода концентрирования руководствуются природой объекта и его химическим составом, последующим методом анализа, продолжительностью проведения всех операций, обеспеченностью всем необходимым оборудованием и т.п.

Таблица 5. Методы концентрирования в анализе следовых количеств веществ

МетодХарактеристика и преимуществаНедостатки Экстракция Позволяет концентрировать как примеси группы веществ, так и отдельные вещества. Метод универсален, прост в оформленииПрименение дорогостоящих рактивовСоосаждение Позволяет производить концентрирование веществДлителен, менее универсален, селективность малаИонообменная хроматографияИспользуется для обмена основного компонента смеси на H+(OH-) или для концентрирования микрокомпонентов из больших объемов растворов. Достигается полнота выделения при низких значениях коэффициентов распределенияСелективность мала, возможны потери и загрязнения вследствие процессов сорбции, процесс трудоемкий Отгонка Применяется для концентрирования легколетучих примесей с их конденсацией на небольшой поверхности. Не требует дополнительных реагентов и растворителейПрименение ограничено некоторыми классами веществ

Соосаждение как метод концентрирования

В последнее время особое значение для аналитических целей приобретает соосаждение - один из наиболее эффективных и давно известных методов концентрирования следовых количеств различных элементов.

Соосаждение - это вид распределения» т. е. распределение микрокомпонента, вызванное выделением коллектора в твердую фазу. Другими словами, оно представляет одновременный переход микро- в макрокомпонентов в формирующуюся твердую фазу коллектора. Соосажденяе включает захват примеси при росте частиц коллектора (введенных в систему в вновь сформированных). При оствальдовой созревании осадка, а также при структурном и морфологическом совершенствовании частиц твердой фазы. В качестве коллекторов применяют гидроокиси металлов (железа, алюминия и др.), сульфиды (CdS, HgS), фосфаты (Ca3(PO4)2 и др.), сульфаты (BaSO4 и др.) и другие неорганические соединения.

Различают два широких класса загрязнении:

Соосаждение, когда основное вещество и примесь осаждаются вместе. Тот факт, что два вещества осаждаются одновременно, еще не говорит о соосаждении. Так, если, например, следы гидроокиси бериллия количественно осаждаются с большим количеством гидроокиси алюминия в условиях, когда оба нерастворимы, т. е. из их насыщенных растворов, то следует говорить о совместном осаждении, а не о соосаждении (сопряженном осаждении);

Послеосаждение - переход примесей в осадок не во время его формирования, а после. Сначала выделяется чистый основной осадок, а потом примесь. Обычно послеосаждение происходит в пересыщенном растворе. Так, следы цинка (II), индия долгом контакте их растворов с осадком сульфидов металлов переходят в осадок.

При осаждении с участием одной твердой фазы разграничивают следующие случаи соосаждения:

Образование химического соединения. Валовой состав твердой фазы при этом отличен от состава каждого из ее ингредиентов, а локальный состав одинаков.

Образование твердого раствора. Изменение валового состава твердой фазы при изменении концентрации компонентов в исходной смеси указывает на образование твердого раствора. Твердую фазу, возникающую при этом виде соосаждення, иногда называют соединением переменного состава. Образование твердых растворов происходит в результате молекулярных процессов, которые можно рассматривать как квазихимические реакции обмена, или присоединения. Общность молекулярного механизма образования является важным аргументом в пользу объединения всех случаев соосаждения с образованием твердых растворов в одном подклассе. Этот подкласс можно разделить на два вида в зависимости от того, кристаллический или аморфный твердый раствор. Соосаждение с образованием кристаллической твердой фазы принято называть сокристаллизацией.

Образование твердой фазы с примесью, сегрегированной на дефектах. Валовой состав твердой фазы в этом случае зависит от состава исходной смеси, а локальный состав неодинаков. Выделяют два типа сегрегации:

а)в объем частиц осадка при их росте переходят только макрокомпоненты исходной смеси или продукты их взаимодействия, а микрокомпонент оттесняется растущими частицами, накапливаясь вблизи границы раздела фаз (эписегрегация). Этот тип связан с захватом примеси поверхностью растущих частиц осадка;

б)микрокомпонент локализован в объеме твердой фазы (эндосегрегация), вблизи дислокаций (дислокационная эндосегрегация), на межкристаллитных границах (межкристаллитная эндосегрегация) или находится в пределах изолированных включений маточной среды(окклюзионная эндосегрегация).

В соосажденни с участием нескольких твердых фаз различают соосажденне с участием разделимых и неразделимых твердых фаз.

Если процесс соосаждения протекает либо только на поверхности твердой фазы, либо также внутри нее, то выделяют два вида соосаждения:

адсорбция - осаждение примеси на поверхности частиц;

окклюзия - осаждение примеси внутри первичных частиц посредством любого возможного механизма.

Явление соосаждения широко используют в аналитической химии как простой и эффективный способ извлечения следов элементов из сильно разбавленных растворов, в которых произведение растворимости осадка не достигается .

Заключение

Методы разделения и концентрирования привыкли рассматривать как нечто, дополняющее аналитическую химию, расширяющее ее возможности, но не как ее основополагающую основную часть. С другой стороны, как уже отмечено во введении, одно из двух основных направлений развития аналитической химии априорно ориентировано на ограниченное сочетание методов разделения и определения веществ в объектах анализа.

Список литературы

1.Москвин Л.Н., Царицина Л.Г. Методы разделения и концентрирования в аналитической химии. - Л., «Химия», 1991. - 256с.

2.Скороход О.Р. Химический анализ: Основы методов концентрирования и разделения веществ. - Мн., «Изд-во БГУ», 1980. - 272с.

.Посыпайко В.И. и др. Химические методы анализа: Учебн. пособие для хим.-технолог. вузов / Посыпайко В.И., Козырева Н.А., Логачева Ю.П. - М., «Высш. школа», 1989. - 448с.

Похожие работы на - Методы разделения и концентрирования в анализе элементов

© rifma-k-slovu.ru, 2024
Rifmakslovu - Образовательный портал