Кодирование и обработка звуковой информации. Презентация на тему "кодирование и обработка звуковой информации" III

30.10.2023

Практическая работа 1.5

Кодирование и обработка звуковой информации

Аппаратное и программное обеспечение. Компьютер с установленной операционной системой Windows, звуковой платой, подключенным микрофоном и динамиками (или наушниками); звуковой редактор Audacity 2.0 .

Цель работы. Научиться оцифровывать звук, редактировать звуковые записи и сохранять звуковые файлы в различных форматах.

Задание. Записать оцифрованный звук, отредактировать запись, наложить две записи, применить звуковые эффекты и сохранить звуковые файлы в различных форматах.

Кодирование и обработка звуковой информации в звуковом редакторе Audacity

    Запустить звуковой редактор Audacity командой [Пуск – Все программы – Audacity Audacity ].

Установим частоту дискретизации звука 22050 Гц и глубину кодирования звука 16 битов.

    В окне приложения выполнить команду [Правка – Параметры ]. В появившемся диалоговом окне выбрать пункт Качество . В соответствующих полях в раскрывающихся списках выбрать частоту дискретизации и глубину кодирования звука (разрядность звука):

Нажать OK .

Запишем оцифрованный звук.

Для остановки записи щелкнуть по кнопке Остановить .

    В окне приложения появится графическое отображение зависимости громкости записанного оцифрованного звука от времени.

Ознакомимся с точками оцифровки, отображенными на графике зависимости громкости звука от времени.

    В окне приложения несколько раз ввести команду [Вид – Приблизить ]. Шкала времени будет существенно растянута, и на графике станут видны точки оцифровки звука:

Осуществим редактирование оцифрованного звука: перенесем начальный фрагмент записи в ее окончание.

Установить курсор на границе конца записи и нажать кнопку Вставить или выполнить команду [Правка – Вставить ].

Прослушать отредактированную запись, щелкнув на панели инструментов по кнопке Воспроизвести .

Осуществим микширование (наложение) двух записей.

    Открыть второй звуковой файл audio. mp3 , хранящийся на локальном диске, командой [Файл – Импортировать – Звуковой файл… ]. Необходимый звуковой файл находится по пути: Мои документы – 9 класс – Заготовки .

Прослушать наложение двух записей, предварительно поместив вертикальную отметку (курсор) в начало звуковых дорожек щелчком мыши или нажатием на клавишу Home , а затем щелкнув на панели инструментов по кнопке Воспроизвести .

Применим к записи различные звуковые эффекты (Плавное нарастание, Смена скорости, Смена высоты тона, Эхо и другие).

    Мышью выделить вторую запись или ее часть и последовательно выполнить команды [Эффекты – Плавное нарастание… ], [Эффекты – Смена высоты тона… ], [Эффекты – Смена скорости… ], [Эффекты – Эхо… ] и другие.

После каждого применения эффектов прослушать получаемые результаты обработки звука.

Сохраним оцифрованный и обработанный звук в звуковом файле

    Для сохранения обработанного звука в собственном формате программы Audacity выполнить команду [Файл – Сохранить проект как… ]. В поле Имя файла: введите название файла – Звук . Сохранить проект в собственной папке.

    Для сохранения звукового файла в универсальном формате WAV выполнить команду [Файл – Экспортировать… ]. В открывшемся диалоговом окне ввести имя файла («Звук») и указать тип файла (WAV) и путь сохранения (собственную папку).

В появившемся окне Правка метаданных в соответствующие текстовые поля можно ввести данные, которые будут сохранены в свойствах звукового файла.

Нажать кнопку OK .

    Для сохранения звукового файла в формате MP3 повторить п. 10 (в раскрывающемся списке Тип файла: выбрать – Файлы MP 3 ). Сохранить файл в собственной папке и под тем же именем.

    Сравнить информационные объемы звуковых файлов, сохраненных в различных форматах.

Тема «Кодирование и обработка звуковой информации»

9 класс

Тип урока: изучение нового материала

Цели урока: а) познакомить учащихся с принципами кодирования звуковой информации; создать условия для формирования навыков создания и обработки звуковой информации;

б) развитие кругозора, осмысленного восприятия действительности, логического мышления;

в) воспитание самостоятельности, работы в коллективе;

Оборудование: презентация «Кодирование и обработка звуковой информации», карточки с Д/з;

План урока:

1 слайд

1) Организационный момент, постановка плана и целей урока:

1. Оцифровка звука: как это делается.

2. Как улучшить качество звуковой информации?

2) Проверка Д\з 2 слайд

Решить кроссворд для повторения темы: « Графика »

  1. Область, занимающаяся работой с графической информацией
  2. Процесс оцифровки изображения
  3. Характеристика изображения
  4. Наименьший элемент растрового изображения
  5. Один из основных составляющих цветов
  6. Графический параметр экрана монитора
  7. Часть устройства вывода графической информации

Ответить на вопросы:

1. Какой процесс переводит аналоговое изображение в дискретное, т. е. оцифровывает изображение? (Пространственная дискретизация )

2. Главные характеристики оцифрованного изображения?(Разрешающая способность и глубина цвета )

3) Актуализация знаний

4) Изучение нового материала 3 слайд

1. Оцифровка звука

Что такое звук? Звук – это звуковая волна с непрерывно меняющейся амплитудой и частотой. Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала.

Звуковые сигналы могут быть аналоговыми и дискретными?

Приведите примеры, по аналогии с графикой, аналогового и дискретного звука.

Схема кодирования звука.

Схема декодирования

4 слайд

Значит, для того чтобы ввести сигнал в компьютер необходимо его оцифровать. Процесс оцифровки звука называется временная дискретизация .

При этом процессе звуковая волна разбивается на отдельные маленькие временные участки и для каждого участка устанавливается определенная величина амплитуды. Данный метод называется импульсивно- амплитудной модуляцией (PCM).

Таким образом, гладкая кривая заменяется последовательностью «ступенек» - обозначающих громкость звука. Чем больше «ступенек», тем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание.

2. Характеристики оцифрованного звука. 5 слайд

Качество звука зависит от двух характеристик – глубина кодирования звука и частоты дискретизации.

6 слайд

Глубина кодирования звука (I) – это количество бит, используемое для кодирования различных уровней сигнала. Тогда общее количество уровней (N) можно вычислить по уже знакомой нам формуле: N=2 I .

Например, если звуковая карта обеспечивает 16-битовую глубину кодирования звука, то общее количество различных уровней будет - 65536.

7 слайд

Частота дискретизации (M) – это количество измерений уровня звукового сигнала в единицу времени. Это характеристика показывает качество звучания. Измеряется в Гц. Одно измерение за одну секунду соответствует 1Гц., 1000 измерений за 1 секунду – 1 КГц. Частота дискретизации звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц – качество звукового сигнала соответствует качеству радиостанции, а при 48 кГц – качеству звучания аудио-CD.

8 слайд

Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и глубине кодирования=16 бит и запись на двух звуковых дорожках («стерео» режим). Для низкого качества звучания характерны: М= 11 кГц, I= 8 бит и запись на одной звуковой дорожке («моно» режим).

Для того чтобы найти общий объем звуковой информации, необходимо воспользоваться следующей формулой: V=M*I*t, где М – частота дискретизации (в Гц), I- глубина кодирования (в битах), t- время звучания (в сек.).

Пример. 9 слайд

Звук воспроизводится в течение 10 секунд при частоте 22,05 кГц и глубине звука 8 бит. Определить его размер (в Мб).

Решение:

М = 22,05*1000= 22050 Гц

V=22050*10*8=1764000 бит =220500 байт =215 Кб = 0,2 Мб.

5) Закрепление изученного материала.

Решение задач

У доски:

1. Определить объем памяти для хранения моноаудиофайла, время звучания которого составляет пять минут при частоте дискретизации 44 кГц и глубине кодирования 16 бит.

Решение: t = 5*60 = 300 сек.

М=44*1000=44000 Гц

V=М*I*t=300*16*44000=211 200 000 бит=26 400 000 байт = 25 781,25 Кб = 25 Мб

2. Найти ошибки в решении задачи: 10 слайд

Определить объем памяти для хранения стереоаудиофайла, время звучания которого составляет 3 минуты при частоте дискретизации 44,1 кГц и глубине кодирования 16 бит.

Решение:

V=М*I*t=3*16*44100=2 116 800 бит =0,25 Мб

3. Если в задачи известен объем, а необходимо найти, например, глубину звука? I=V/(M*t).

По рядам: 11 слайд

а) Объем звуковой записи – 5,25 Мб, глубина кодирования – 8 бит. Звуковая информация записана с частотой дискретизации 44,1 кГц. Какова длительность звучания такой информации?

Решение:

V=5,25*8*1024*1024=44 040 192 бита

М = 44,1*1000=44100 Гц

t=V/(M*I)= 44 040 192/(44100*8)= 44 040 192/352 800=124 сек=2 минуты

б) Одна минута записи звуковой информации занимает на диске 1,3 Мб, глубина кодирования равна 16 бит. С какой частотой дискретизации записан звук?

Решение:

V=1,3*8*1024*1024=10 905 190,4 бит

М= V/(t*I)= 10 905 190,4/(60*16)= 10 905 190,4/960=11359 Гц=11 КГц

6) Итоги урока: 12 слайд

  1. Что представляет из себя звук?
  2. Каким по типу является звуковой сигнал?
  3. Как аналоговый звуковой сигнал преобразовать в дискретный?
  4. Каковы характеристики оцифрованного звука?
  5. По какой формуле можно вычислить объем звукового сигнала?
  6. Каково высокое и низкое качество звучания?

7) Д/з 13 слайд

П. 1.5

Задачи на карточках

На оценку «3»:

Задание из учебника 1.23

На оценку «4»:

Ответ: 111,7 секунд =1, 86 минут

На оценку «5»:

Ответ: 22,05 КГц и 16 бит или 44,1 кГц и 8 бит.

Д/з

На оценку «3»:

Задание из учебника 1.23

На оценку «4»:

Какова длительность звучания звуковой информации низкого качества и объеме 1200 Кб?

На оценку «5»:

Какой должна быть частота дискретизации и глубина кодирования для записи звуковой информации длительностью 2 минуты, если в распоряжении пользователя имеется память объемом 5,1 Мбайта.

Д/з

На оценку «3»:

Задание из учебника 1.23

На оценку «4»:

Какова длительность звучания звуковой информации низкого качества и объеме 1200 Кб?

На оценку «5»:

Какой должна быть частота дискретизации и глубина кодирования для записи звуковой информации длительностью 2 минуты, если в распоряжении пользователя имеется память объемом 5,1 Мбайта.

Д/з

На оценку «3»:

Задание из учебника 1.23

На оценку «4»:

Какова длительность звучания звуковой информации низкого качества и объеме 1200 Кб?

На оценку «5»:

Какой должна быть частота дискретизации и глубина кодирования для записи звуковой информации длительностью 2 минуты, если в распоряжении пользователя имеется память объемом 5,1 Мбайта.

Д/з

На оценку «3»:

Задание из учебника 1.23

На оценку «4»:

Какова длительность звучания звуковой информации низкого качества и объеме 1200 Кб?

На оценку «5»:

Какой должна быть частота дискретизации и глубина кодирования для записи звуковой информации длительностью 2 минуты, если в распоряжении пользователя имеется память объемом 5,1 Мбайта.

Звуковая плата

Переменный ток

Микрофон

Звуковая

волна

Двоичный код

Память

ЭВМ

Память

ЭВМ

Двоичный код

В классе:

№70

Битовая глубина равна 32, видеопамять делится на две страницы, разрешающая способность дисплея – 800х600. вычислить объем видеопамяти.

На оценку «3»

№65

Какой объем видеопамяти необходим для хранения четырех страниц изображения, если битовая глубина равна 24, а разрешающая способность дисплея – 800х600 пикселей?

№ 90

Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

На оценку «4»

№ 92

Объем свободной памяти на диске – 5,25 Мб, разрядность звуковой платы – 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

№93

Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы – 8. С какой частотой дискретизации записан звук?

№ 95

Цифровой аудиофайл содержит запись звука низкого качества. Какова длительность звучания файла, если его объем составляет 650 Кб?

На оценку «5»

№67

Объем видеопамяти равен 1 Мб. Разрешающая способность дисплея – 800х600. Какое максимальное количество цветов можно использовать при условии, что видеопамять делится на две страницы?

№94

Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 мин?

№96

Две минуты записи цифрового аудиофайла занимают на диске 5,05 Мб. Частота дискретизации – 22050 Гц. Какова разрядность аудиофайла?


Цели: познакомить со звуковой информацией и ее характери­стиками; научить обрабатывать звуковую информацию на ком­пьютере.

Требования к знаниям и умениям

Учащиеся должны знать:

Что такое звуковая информация;

Что такое громкость, тон, интенсивность, частота;

Понятия «частота дискретизации», «глубина кодирования звука»;

Программное и аппаратное обеспечение для обработки звука.

Учащиеся должны уметь:

Оцифровывать звуковую информацию;

Редактировать запись;

Применять звуковые эффекты;

Сохранять звуковые файлы в различных форматах.

Программно-дидактическое оснащение: Угр., § 1.5, с. 40; де­монстрация «Кодирование звуковой информации»; проектор; звуковой редактор Audacity.

ХОД УРОКА

I. Организационный момент

II. Актуализация знаний

Какие виды информации по способу восприятия вы знаете? (Визуальную, аудиалъную, кинестетическую, запах, вкус.)

Какой вид информации человек воспринимает в наиболь­шем количестве? (Визуальную.)

III. Постановка целей урока

Вторым по величине объемов воспринимаемой информации является звук.

А что это такое? (Волна, которая распространяется в воздухе, воде или другой среде.)

IV. Работа по теме урока

(Объяснение сопровождается демонстрацией «Кодирование звуковой информации».)

Звуковая волна распространяется в любой среде с непрерывно меняющимися интенсивностью и частотой, с различными гром­костью и тоном.

Как называется единица измерения громкости? (Децибел.) Изменение громкости звука на 10 дБ, соответствует измене­нию интенсивности звука в 10 раз.

Для того чтобы компьютер мог обрабатывать звук, его нужно оцифровать. Это производится с помощью временной дискрети­зации. Звуковая волна разбивается на временные кусочки, для каждого из которых устанавливается своя величина интенсив­ности звука.

Какие аппаратные средства необходимы для работы со зву­ковой информацией? (Микрофон, звуковая плата, динамик.)

Качество звука зависит от частоты дискретизации звука - ко­личества измерений громкости звука за одну секунду. Эта величи­на принимает значения от 8000 до 48 000. Каждый кусочек звуко­вой волны имеет свой уровень громкости звука, для кодирования которого необходимо определенное количество информации — глубина кодирования звука. В процессе кодирования каждому уровню громкости присваивается свой 16-битный код.

Какой оцифрованный звук будет самого низкого качества, а какой самого высокого? (Телефонная связь, ayduo-CD.)

Чем выше качество звука, тем больший объем звукового файла.

— Какое программное обеспечение необходимо для работы со звуком? (Проигрыватель, звуковой редактор.)

Звуковые редакторы позволяют записывать, воспроизводить и редактировать звук (удалять, копировать, перемещать части звуковой дорожки, накладывать друг на друга, применять аку­стические эффекты, изменять частоту дискретизации и глубину кодирования).

Выделяют три группы звуковых форматов файлов:

Аудиоформаты без сжатия, такие, как WAV, AIFF;

Аудиоформаты со сжатием без потерь (АРЕ, FLAC);

Аудиоформаты с применением сжатия с потерями (шрЗ, ogg).

V. Практическая работа

Полное содержание урока посмотрите по ссылке ниже:

Из физики известно, что звук – это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), то видно плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой – аналоговый – сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.

Делается это, например, так – измеряется напряжение через равные промежутки времени и полученные значения записываются в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его – аналого-цифровым преобразователем (АЦП).

Чтобы воспроизвести закодированный таким образом звук, нужно сделать обратное преобразование (для этого служит цифро-аналоговый преобразователь – ЦАП), а затем сгладить получившийся ступенчатый сигнал.

Чем выше частота дискретизации и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук, но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.

Параметры дискретизации.

Важными параметрами дискретизации являются частота и разрядность.

Разрядность указывает, с какой точностью происходят изменения амплитуды аналогового сигнала. Точность, с которой при оцифровке передается значение амплитуды сигнала в каждый из моментов времени, определяет качество сигнала после цифро-аналогового преобразования. Именно от разрядности зависит достоверность восстановления формы волны.

Для кодирования значения амплитуды используют принцип двоичного кодирования. Звуковой сигнал должен быть представленным в виде последовательности электрических импульсов (двоичных нулей и единиц). Обычно используют 8, 16-битное или 20-битное представление значений амплитуды. При двоичном кодировании непрерывного звукового сигнала его заменяют последовательностью дискретных уровней сигнала.

Частота - количество измерений амплитуды аналогового сигнала в секунду.

В новом формате компакт-дисков Audio DVD за одну секунду сигнал измеряется 96 000 раз, т.е. применяют частоту дискретизации 96 кГц. Для экономии места на жестком диске в мультимедийных приложениях довольно часто применяют меньшие частоты: 11, 22, 32 кГц. Это приводит к уменьшению слышимого диапазона частот, а, значит, происходит сильное искажение того, что слышно.

От частоты дискретизации (количества измерений уровня сигнала в единицу времени) зависит качество кодирования. С увеличением частоты дискретизации увеличивается точность двоичного представления информации. При частоте 8 кГц (количество измерений в секунду 8000) качество оцифрованного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц (количество измерений в секунду 48000) - качеству звучания аудио- CD.

В современных преобразователях принято использовать 20-битное кодирование сигнала, что позволяет получать высококачественную оцифровку звука.

Вспомним формулу К = 2 a . Здесь К - количество всевозможных звуков (количество различных уровней сигнала или состояний), которые можно получить при помощи кодирования звука а битами

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется довольно компактный способ представления музыки – нотная запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие, чисто компьютерные, форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18–20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает, примерно, 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Задачи по кодированию текста.

1. Два текста содержат одинаковое количество символов. Первый текст записан на русском языке, а второй на языке племени нагури, алфавит которого состоит из 16 символов. Чей текст несет большее количество информации?

I = К * а (информационный объем текста равен произведению числа символов на информационный вес одного символа).

Т.к. оба текста имеют одинаковое число символов (К), то разница зависит от информативности одного символа алфавита (а).

2 а1 = 32, т.е. а1 = 5 бит,

2 а2 = 16, т.е. а2 = 4 бит.

I1 = К * 5 бит, I2 = К * 4 бит.

Значит, текст, записанный на русском языке в 5/4 раза несет больше информации.

2. Объем сообщения, содержащего 2048 символов, составил 1/512 часть Мбайта. Определить мощность алфавита.

I = 1/512 * 1024 * 1024 * 8 = 16384 бит. - перевели в биты информационный объем сообщения.

а = I / К = 16384 / 2048 = 8 бит - приходится на один символ алфавита.

2 8 = 256 символов - мощность использованного алфавита.

Именно такой алфавит используется в кодировке ASCII.

Задачи по кодированию изображения.

1. Сколько бит требуется, чтобы закодировать информацию о 130 оттенках?

Нетрудно подсчитать, что 8 (то есть 1 байт), поскольку при помощи 7 бит можно сохранить номер оттенка о 0 до 127, а 8 бит хранят от 0 до 255. Легко видеть, что такой способ кодирования неоптимален: 130 заметно меньше 255.

2. Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200. Сколько страниц экрана одновременно разместится в видеопамяти при палитре

а) из 8 цветов;

б) 16 цветов;

в) 256 цветов?

3. В режиме True Color на хранение кода каждого пикселя отводится:

4. Минимальной единицей измерения графического изображения на экране монитора является:

5. Растровый графический файл содержит черно-белое изображение (без градаций серого) размером 100х100 точек. Какой объем памяти требуется для хранения этого файла?

6. Растровый файл, содержащий черно-белый (без оттенков серого) квадратный рисунок, имеет объем 200 байт. Рассчитайте размер стороны квадрата (в пикселях).

7. Объем изображения, размером 40х50 пикселей, составляет 2000 байт. Изображение использует:

256 цветов;

16777216 цветов.

8. Известно, что видеопамять компьютера имеет объем 512 Кбайт. Разрешающая способность экрана 640 на 200 пикселей. Сколько страниц экрана одновременно разместится в видеопамяти при палитре:

из 8 цветов;

16 цветов;

256 цветов?

Задачи по кодированию звука.

а) 44.1 кГц;

и разрядностью 16 бит.

а) Если записывают моносигнал с частотой 44.1 кГц, разрядностью 16 бит (2 байта), то каждую минуту аналого-цифровой преобразователь будет выдавать 44100 * 2 * 60 = 529000 байт (примерно 5 Мб) данных об амплитуде аналогового сигнала, который в компьютере записываются на жесткий диск.

Если записывают стереосигнал, то 1058000 байт (около 10 Мб)

б) для частот 11, 22, 32 кГц расчеты производятся аналогично.

2. Какой информационный объем имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)?

16 бит * 24000 = 384000 бит = 48000 байт = 47 кБайт

3. Рассчитайте объем стерео аудиофайла длительностью 20 секунд при 20-битном кодировании и частоте дискретизации 44.1 кГц.

20 бит * 20 * 44100 * 2 = 35280000 бит = 4410000 байт = 4.41 Мб

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица "децибел" (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек" (рис. 1.2).


Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации . Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2 I . Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2 I = 2 16 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3 .

При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Контрольные вопросы

1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

Задания для самостоятельного выполнения

1.22. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?
1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.

1.23. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:
а) моно, 8 битов, 8000 измерений в секунду;
б) стерео, 16 битов, 48 000 измерений в секунду.

1.24. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5" (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):
а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;
б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.

© rifma-k-slovu.ru, 2024
Rifmakslovu - Образовательный портал