Стороны треугольника по высоте. Найти наибольшую высоту треугольника

14.07.2023

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

При решении различного рода задач, как сугубо математического, так и прикладного характера (особенно в строительстве), нередко требуется определить значение высоты определенной геометрической фигуры. Как рассчитать данную величину (высоту) в треугольнике?

Если мы попарно совместим 3 точки, расположенные не на единой прямой, то полученная фигура будет треугольником. Высота – часть прямой из любой вершины фигуры, которая при пересечении с противоположной стороной образует угол 90°.

Найти высоту в разностороннем треугольнике

Определим значение высоты треугольника в случае, когда фигура имеет произвольные углы и стороны.

Формула Герона

h(a)=(2√(p(p-a)*(p-b)*(p-c)))/a, где

p – половина периметра фигуры, h(a) – отрезок к стороне a, проведенный под прямым углом к ней,

p=(a+b+c)/2 – расчет полупериметра.

В случае наличия площади фигуры для определения ее высоты можно воспользоваться соотношением h(a)=2S/a.

Тригонометрические функции

Для определения длины отрезка, который составляет при пересечении со стороной a прямой угол, можно воспользоваться следующими соотношениями: если известна сторона b и угол γ или сторона c и угол β, то h(a)=b*sinγ или h(a)=c*sinβ.
Где:
γ – угол между стороной b и a,
β – угол между стороной c и a.

Взаимосвязь с радиусом

Если исходный треугольник вписан в окружность, для определения величины высоты можно воспользоваться радиусом такой окружности. Центр ее расположен в точке, где пересекаются все 3 высоты (из каждой вершины) – ортоцентре, а расстояние от него и до вершины (любой) – радиус.

Тогда h(a)=bc/2R, где:
b, c – 2 другие стороны треугольника,
R – радиус описывающей треугольник окружности.

Найти высоту в прямоугольном треугольнике

В данном виде геометрической фигуры 2 стороны при пересечении образуют прямой угол – 90°. Следовательно, если требуется определить в нем значение высоты, то необходимо вычислить либо размер одного из катетов, либо величину отрезка, образующего с гипотенузой 90°. При обозначении:
a, b – катеты,
c – гипотенуза,
h(c) – перпендикуляр на гипотенузу.
Произвести необходимые расчеты можно с помощью следующих соотношений:

  • Пифагорова теорема:

a=√(c 2 -b 2),
b=√(c 2 -a 2),
h(c)=2S/c,т.к. S=ab/2,то h(c)=ab/c .

  • Тригонометрические функции:

a= c*sinβ,
b=c* cosβ,
h(c)=ab/c=с* sinβ* cosβ.

Найти высоту в равнобедренном треугольнике

Данная геометрическая фигура отличается наличием двух сторон равной величины и третьей – основанием. Для определения высоты, проведенной к третьей, отличной стороне, на помощь приходит теорема Пифагора. При обозначениях
a – боковая сторона,
c – основание,
h(c) – отрезок к c под углом 90°, то h(c)=1/2 √(4a 2 -c 2).


Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника , можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Задача 1.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

Дано:

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Решение:

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. можно найти с помощью формулы Герона. Поэтому

Вычисляем:

Ответ:

Задача 2.

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

Дано:

AC=25 см, AB=11 см, BC=30 см.

Найти:

наибольшую высоту треугольника ABC.

Решение:

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

Вычисление высоты треугольника зависит от самой фигуры (равнобедренный, равносторонний, разносторонний, прямоугольный). В практической геометрии сложные формулы, как правило, не встречаются. Достаточно знать общий принцип вычислений для того, чтобы он мог быть универсально применим для всех треугольников. Сегодня мы познакомим вас с базовыми принципами вычисления высоты фигуры, расчетными формулами, основываясь на свойствах высот треугольников.

Что такое высота?

Высота имеет несколько отличительных свойств

  1. Точка, где все высоты соединяются, называется ортоцентром. Если треугольник остроконечный, то ортоцентр находится внутри фигуры, если один из углов тупой, то ортоцентр, как правило, находится снаружи.
  2. В треугольнике, где один угол равен 90°, ортоцентр и вершина совпадают.
  3. В зависимости от вида треугольника есть несколько формул, как найти высоту треугольника.

Традиционные вычисления

  1. Если р – это половина периметра, тогда a, b, c являются обозначением сторон требуемой фигуры, h – высота, то первая и самая простая формула будет выглядеть следующим образом: h = 2/a √p(p-a) (p-b) (p-c).
  2. В школьных учебниках часто можно найти задачи, в которых известно значение одной из сторон треугольника и величина угла между данной стороной и основанием. Тогда формула расчета высоты будет выглядеть так: h = b ∙ sin γ + c ∙ sin β.
  3. Когда дана площадь треугольника – S, а также длина основания – а, то вычисления будут максимально простыми. Высоту находят по формуле: h = 2S/a.
  4. Когда дан радиус окружности, описанной вокруг фигуры, вначале вычисляем длины его двух сторон, а затем приступаем к вычислению заданной высоты треугольника. Для этого используем формулу: h = b ∙ c/2R, где b и c – это две стороны треугольника, которые не являются основанием, а R – радиус.
Как найти высоту равнобедренного треугольника?

Все стороны у данной фигуры равнозначны, их длины равны, поэтому и углы при основании тоже будут равными. Из этого следует, что высоты, которые проводим на основания, тоже будут равны, они же и медианы, и биссектрисы одновременно. Говоря простым языком, высота в равнобедренном треугольнике делит основание надвое. Треугольник с прямым углом, который получился после проведения высоты, будем рассматривать с помощью теоремы Пифагора. Обозначим боковую сторону как а, а основание как b, тогда высота h = ½ √4 a2 − b2.

Как найти высоту равностороннего треугольника?

Формула равностороннего треугольника (фигуры, где все стороны являются равновеликими), можно найти, исходя из предыдущих вычислений. Необходимо только измерить длину одной из сторон треугольника и обозначить её как а. Тогда высота выводится по формуле: h = √3/2 a.

Как найти высоту прямоугольного треугольника?

Как известно, угол в прямоугольном треугольнике равен 90°. Высота, опущенная на один катет, одновременно является и вторым катетом. На них и будут лежать высоты треугольника с прямым углом. Для получения данных о высоте, нужно немного преобразовать имеющуюся формулу Пифагора, обозначив катеты – а и b, а также измерив длину гипотенузы – с.

Найдем длину катета (сторона, которой будет перпендикулярна высота): a = √ (c2 − b2). Длина второго катета находится по точно такой же формуле: b =√ (c2 − b2). После чего можно приступать к вычислению высоты треугольника с прямым углом, предварительно сосчитав площадь фигуры – s. Значение высоты h = 2s/a.

Расчеты с разносторонним треугольником

Когда разносторонний треугольник имеет острые углы, то высота, опускаемая на основание, видна. Если же треугольник с тупым углом, то высота может находиться вне фигуры, и нужно мысленно её продолжить, чтобы получить точку соединения высоты и основания треугольника. Самым простым способом измерить высоту является вычисление её через одну из сторон и величины углов. Формула выглядит следующим образом: h = b sin y + c sin ß.

Треугольника) или проходить вне треугольника у тупоугольного треугольника.

Энциклопедичный YouTube

    1 / 5

    ✪ ВЫСОТА МЕДИАНА БИССЕКТРИСА треугольника 7 класс

    ✪ биссектриса, медиана, высота треугольника. Геометрия 7 класс

    ✪ 7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

    ✪ Медиана, биссектриса, высота треугольника | Геометрия

    ✪ Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис Трушин

    Субтитры

Свойства точки пересечения трех высот треугольника (ортоцентра)

E A → ⋅ B C → + E B → ⋅ C A → + E C → ⋅ A B → = 0 {\displaystyle {\overrightarrow {EA}}\cdot {\overrightarrow {BC}}+{\overrightarrow {EB}}\cdot {\overrightarrow {CA}}+{\overrightarrow {EC}}\cdot {\overrightarrow {AB}}=0}

(Для доказательства тождества следует воспользоваться формулами

A B → = E B → − E A → , B C → = E C → − E B → , C A → = E A → − E C → {\displaystyle {\overrightarrow {AB}}={\overrightarrow {EB}}-{\overrightarrow {EA}},\,{\overrightarrow {BC}}={\overrightarrow {EC}}-{\overrightarrow {EB}},\,{\overrightarrow {CA}}={\overrightarrow {EA}}-{\overrightarrow {EC}}}

В качестве точки E следует взять пересечение двух высот треугольника.)

  • Ортоцентр изогонально сопряжен центру описанной окружности .
  • Ортоцентр лежит на одной прямой с центроидом , центром описанной окружности и центром окружности девяти точек (см. прямая Эйлера).
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник .
  • Центр описанной ортоцентром треугольника с вершинами в серединах сторон данного треугольника. Последний треугольник называют дополнительным треугольником по отношению к первому треугольнику.
  • Последнее свойство можно сформулировать так: Центр описанной около треугольника окружности служит ортоцентром дополнительного треугольника .
  • Точки, симметричные ортоцентру треугольника относительно его сторон, лежат на описанной окружности.
  • Точки, симметричные ортоцентру треугольника относительно середин сторон, также лежат на описанной окружности и совпадают с точками, диаметрально противоположными соответствующим вершинам.
  • Если О - центр описанной окружности ΔABC, то O H → = O A → + O B → + O C → {\displaystyle {\overrightarrow {OH}}={\overrightarrow {OA}}+{\overrightarrow {OB}}+{\overrightarrow {OC}}} ,
  • Расстояние от вершины треугольника до ортоцентра вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
  • Любой отрезок, проведенный из ортоцентра до пересечения с описанной окружностью всегда делится окружностью Эйлера пополам. Ортоцентр есть центр гомотетии этих двух окружностей.
  • Теорема Гамильтона . Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих ту же самую окружность Эйлера (окружность девяти точек), что и исходный остроугольный треугольник.
  • Следствия теоремы Гамильтона :
    • Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника Гамильтона , имеющих равные радиусы описанных окружностей.
    • Радиусы описанных окружностей трёх треугольников Гамильтона равны радиусу окружности, описанной около исходного остроугольного треугольника.
  • В остроугольном треугольнике ортоцентр лежит внутри треугольника; в тупоугольном - вне треугольника; в прямоугольном - в вершине прямого угла.

Свойства высот равнобедренного треугольника

  • Если в треугольнике две высоты равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса), и третья высота одновременно является медианой и биссектрисой того угла, из которого она выходит.
  • Верно и обратное: в равнобедренном треугольнике две высоты равны, а третья высота одновременно является медианой и биссектрисой.
  • У равностороннего треугольника все три высоты равны.

Свойства оснований высот треугольника

  • Основания высот образуют так называемый ортотреугольник , обладающий собственными свойствами.
  • Описанная около ортотреугольника окружность - окружность Эйлера . На этой окружности также лежат три середины сторон треугольника и три середины трёх отрезков, соединяющих ортоцентр с вершинами треугольника.
  • Другая формулировка последнего свойства:
    • Теорема Эйлера для окружности девяти точек . Основания трёх высот произвольного треугольника, середины трёх его сторон (основания его внутренних медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром , все лежат на одной окружности (на окружности девяти точек ).
  • Теорема . В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.
  • Теорема . В треугольнике отрезок, соединяющий основания двух высот треугольника, лежащие на двух сторонах, антипараллелен третьей стороне, с которой он не имеет общих точек. Через два его конца, а также через две вершины третьей упомянутой стороны всегда можно провести окружность.

Другие свойства высот треугольника

  • Если треугольник разносторонний (неравносторонний ), то его внутренняя биссектриса , проведённая из любой вершины, лежит между внутренними медианой и высотой, проведёнными из той же вершины.
  • Высота треугольника изогонально сопряжена диаметру (радиусу) описанной окружности , проведенному из той же самой вершины.
  • В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
  • В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника, подобных исходному.

Свойства минимальной из высот треугольника

Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:

  • Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
  • Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
  • При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
  • Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Основные соотношения

  • h a = b ⋅ sin ⁡ γ = c ⋅ sin ⁡ β , {\displaystyle h_{a}=b{\cdot }\sin \gamma =c{\cdot }\sin \beta ,}
  • h a = 2 ⋅ S a , {\displaystyle h_{a}={\frac {2{\cdot }S}{a}},} где S {\displaystyle S} - площадь треугольника, a {\displaystyle a} - длина стороны треугольника, на которую опущена высота .
  • h a = b ⋅ c 2 ⋅ R , {\displaystyle h_{a}={\frac {b{\cdot }c}{2{\cdot }R}},} где b ⋅ c {\displaystyle b{\cdot }c} - произведение боковых сторон, R − {\displaystyle R-} радиус описанной окружности
  • h a: h b: h c = 1 a: 1 b: 1 c = (b ⋅ c) : (a ⋅ c) : (a ⋅ b) . {\displaystyle h_{a}:h_{b}:h_{c}={\frac {1}{a}}:{\frac {1}{b}}:{\frac {1}{c}}=(b{\cdot }c):(a{\cdot }c):(a{\cdot }b).}
  • 1 h a + 1 h b + 1 h c = 1 r {\displaystyle {\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}={\frac {1}{r}}} , где r {\displaystyle r} - радиус вписанной окружности .
  • S = 1 (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle S={\frac {1}{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}} , где S {\displaystyle S} - площадь треугольника.
  • a = 2 h a ⋅ (1 h a + 1 h b + 1 h c) ⋅ (1 h a + 1 h b − 1 h c) ⋅ (1 h a + 1 h c − 1 h b) ⋅ (1 h b + 1 h c − 1 h a) {\displaystyle a={\frac {2}{h_{a}{\cdot }{\sqrt {({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{b}}}-{\frac {1}{h_{c}}}){\cdot }({\frac {1}{h_{a}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{b}}}){\cdot }({\frac {1}{h_{b}}}+{\frac {1}{h_{c}}}-{\frac {1}{h_{a}}})}}}}} , a {\displaystyle a} - сторона треугольника к которой опускается высота h a {\displaystyle h_{a}} .
  • Высота равнобедренного треугольника , опущенная на основание: h c = 1 2 ⋅ 4 a 2 − c 2 , {\displaystyle h_{c}={\frac {1}{2}}{\cdot }{\sqrt {4a^{2}-c^{2}}},}
где c {\displaystyle c} - основание, a {\displaystyle a} - боковая сторона.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике ABC длиной h {\displaystyle h} , проведённая из вершины прямого угла, делит гипотенузу длиной c {\displaystyle c} на отрезки m {\displaystyle m} и n {\displaystyle n} , соответствующие катетам b {\displaystyle b} и a {\displaystyle a} , то верны следующие равенства.

© rifma-k-slovu.ru, 2024
Rifmakslovu - Образовательный портал